Distinct patterns of dysregulated expression of enzymes involved in androgen synthesis and metabolism in metastatic prostate cancer tumors.
نویسندگان
چکیده
Androgen receptor (AR) signaling persists in castration-resistant prostate carcinomas (CRPC), because of several mechanisms that include increased AR expression and intratumoral androgen metabolism. We investigated the mechanisms underlying aberrant expression of transcripts involved in androgen metabolism in CRPC. We compared gene expression profiles and DNA copy number alteration (CNA) data from 29 normal prostate tissue samples, 127 primary prostate carcinomas (PCa), and 19 metastatic PCas. Steroidogenic enzyme transcripts were evaluated by quantitative reverse transcriptase PCR in PCa cell lines and circulating tumor cells (CTC) from CRPC patients. Metastatic PCas expressed higher transcript levels for AR and several steroidogenic enzymes, including SRD5A1, SRD5A3, and AKR1C3, whereas expression of SRD5A2, CYP3A4, CYP3A5, and CYP3A7 was decreased. This aberrant expression was rarely associated with CNAs. Instead, our data suggest distinct patterns of coordinated aberrant enzyme expression. Inhibition of AR activity by itself stimulated AKR1C3 expression. The aberrant expression of the steroidogenic enzyme transcripts was detected in CTCs from CRPC patients. In conclusion, our findings identify substantial interpatient heterogeneity and distinct patterns of dysregulated expression of enzymes involved in intratumoral androgen metabolism in PCa. These steroidogenic enzymes represent targets for complete suppression of systemic and intratumoral androgen levels, an objective that is supported by the clinical efficacy of the CYP17 inhibitor abiraterone. A comprehensive AR axis-targeting approach via simultaneous, frontline enzymatic blockade, and/or transcriptional repression of several steroidogenic enzymes, in combination with GnRH analogs and potent antiandrogens, would represent a powerful future strategy for PCa management.
منابع مشابه
Molecular and Cellular Pathobiology Distinct Patterns of Dysregulated Expression of Enzymes Involved inAndrogenSynthesis andMetabolism inMetastatic Prostate Cancer Tumors
Androgen receptor (AR) signaling persists in castration-resistant prostate carcinomas (CRPC), because of several mechanisms that include increased AR expression and intratumoral androgen metabolism. We investigated the mechanisms underlying aberrant expression of transcripts involved in androgen metabolism in CRPC. We compared gene expression profiles and DNA copy number alteration (CNA) data f...
متن کاملSteroid hormone synthetic pathways in prostate cancer
While androgen deprivation therapy (ADT) remains the primary treatment for metastatic prostate cancer (PCa) since the seminal recognition of the disease as androgen-dependent by Huggins and Hodges in 1941, therapy is uniformly marked by progression to castration-resistant prostate cancer (CRPC) over a period of about 18 months, with an ensuing median survival of 1 to 2 years. Importantly, castr...
متن کاملMetastatic Tumors to Craniofacial Skeleton: Analysis of Two Cases and Review of the Literature
Craniofacial skeletal metastasis is a rare presentation of advanced prostate cancer. This is a report of a 69-year-old man who presented with numbness of the right lower lip and recently ill-fitting lower denture. Based on the medical history of benign prostate hyperplasia (BPH) and suspicion of a metastatic tumor, prostate core needle biopsy was performed. Histology of the prostate biopsy con...
متن کاملStudy of NGEP expression in androgen sensitive prostate cancer cells: A potential target for immunotherapy
Background: Prostate cancer is one of the leading causes of cancer deaths among men. New gene expressed in prostate (NGEP), is a prostate-specific gene expressed only in normal prostate and prostate cancer tissue. Because of its selective expression in prostate cancer cell surface, NGEP is a potential immunotherapeutic target. To target the NGEP in prostate cancer, it is essential to investig...
متن کاملDysregulation of sterol response element-binding proteins and downstream effectors in prostate cancer during progression to androgen independence.
Androgen ablation, the most common therapeutic treatment used for advanced prostate cancer, triggers the apoptotic regression of prostate tumors. However, remissions are temporary because surviving prostate cancer cells adapt to the androgen-deprived environment and form androgen-independent (AI) tumors. We hypothesize that adaptive responses of surviving tumor cells result from dysregulated ge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 72 23 شماره
صفحات -
تاریخ انتشار 2012